PadPuls M2
Art.No.: IM003G + IM003GB

(Valid from M-Bus generation: $40)

Art.-No. IM003G: 2-channel pulse collector for wall mounting with 0,23Ah battery
Art.-No. IM003GB: 2-channel pulse collector for wall mounting with 1,35Ah battery

Contents

1 Functional description .. 2
2 Installation and Startup .. 3
 2.1 Mounting the case ... 3
 2.2 Activating .. 4
 2.3 Connecting .. 5
3 Parameterization using MBCONF ... 7
 3.1 Installation .. 7
 3.2 Operation .. 7
 3.3 Sheet Info .. 8
 3.4 Sheets M2 Port1 and M2 Port2 .. 11
4 Notes on malfunctionings ... 15
5 Exchange of battery .. 15
6 M-Bus Telegrams .. 16
7 Technical Data ... 19
1 Functional description

The PadPuls M2 serves for the adaptation to the M-Bus system of consumption measuring instruments, such as, current, gas or water meters. However, the meters to be adapted must have a floating pulse output. Up to two impulse meters can simultaneous be connected to the inputs of this device. Optionally the user can activate a tariff function, by which energy or volume pulses are accumulated in separate meter readings for primary and secondary tariffs. In this case a floating signal for tariff switch is used at Port 2.

Each port or each tariff of the PadPuls M2 can be read on M-Bus using its own primary and secondary address. The PadPuls M2 thus acts as two stand-alone M-Bus Slaves! The user configures the pulse collector with the software MBCONF. The accumulated pulses are converted into kWh, m3, J or other physical units. The user interface of MBCONF allows the operator to get an easy access to the configuration.

When connected to the M-Bus the PadPuls M2 is powered from the bus. A built-in battery ensures that metering continues if the M-Bus is interrupted. Two battery options are available. The version with the higher capacity allows M-Bus independent metering for several years.

Another feature of the PadPuls M2 is the due-date function. Meter data are saved separately at the preset due-date at 00:00 hour (day change to the due-date) by the implemented clock with calendar function. The due-date can be changed without lost of the already stored counters. Additionally the M-Bus Master can initiate an immediate execution of the due-date function by sending of the so-called „Freeze“ command. A „Freeze“ sent to all pulse collectors using the broadcast address 254 is helpful for generating reading profiles of an M-Bus system. Afterwards the master software polls the data of all meters.

The complete configuration data is saved into a non-volatile memory (EEPROM). Additional security is provided by daily saving of meter readings into this EEPROM. In case of M-Bus fail and empty battery the last saved data is restored on power up.

The configuration data can be protected against unauthorized manipulation. The PadPuls M2 can therefore be switched to protection mode with a special M-Bus telegram. Subsequent changes to device parameters cannot be made in this operating mode. The protection mode can then only be disabled by opening the sealed housing and pressing the unprotect pushbutton for minimum 4 seconds.
2 Installation and Startup

2.1 Mounting the case

The bottom part of case is first attached to the wall with the terminals arranged downward. Please use 2 screws mounted through the outside drillings at the case. The cable for pulse generator and M-Bus interface are led through the self sealing cable glands in the housing. You should break the cable glands with a small screw driver if you use flexible cables. To ensure a high protective class of up to IP65 the hole must be much smaller than the outer diameter of the cable. If you lift the terminal connectors and feed the cables far enough through the glands, you can connect the wires comfortably outside of the housing. Afterwards please withdraw the cables again and put the terminals on the appropriate pin rows on the circuit board. The strain relief is given by looping the enclosed cable straps around the cable. If you have completed all assembly and configuration work, you should protect the device against manipulation with one sticking on each screw on the cover of the case.

The accompanying drawing defines the measures for wall mounting in mm:
2.2 Activating

Coming from factory the PadPuls M2 must first be activated. The cover of the housing is to be removed. On the circuit board there is a 2pin row marked with “BAT”. Here the jumper must be put on both pins to allow battery operation and security function in case of M-Bus failure.

- If the device is not used for a longer time, it is advisable to deactivate battery operation by removing the jumper to preserve the battery.

- If the battery should be empty, it can be exchanged. See section 5.

The PadPuls M2 is supplied from M-Bus if it is available. In this normal state the internal battery is then not loaded. Only when the M-Bus fails the battery takes over automatically the supply. There is no lost of data and the counting function is continued. The PadPuls M2 draws approximately 1.5mA current (one unit load) from the M-Bus.
2.3 Connecting

The following figure shows the link of two counters with impulse outputs to the PadPuls M2. We recommend to use 2-wire cables (twisted pair, NYM or j-Y(St)Y) with a max. length of 10m. In any case it must be noted that the total capacity of the cable plus impulse generator attached at any port may not exceed 2nF (optional 12nF with activated “extended pulse sampling”).

- If not all ports of PadPulse M2 are used, you should not attach a cable to the respective unused port. The capacity of an open-circuited cable reduces the lifetime of the battery in stand-alone operation (no M-Bus available).
The following graph represents the diagram of connections in the tariff mode with one counter and a tariff signal generator:

The specifications of the impulse and tariff signal generator can be taken from the technical data. The maximum pulse frequency to be counted is 14Hz.

- If the pulse frequency is over 14 Hz, false countings can occur.
3 Parameterization using MBCONF

The configuration of the device must be adapted by the customer to the respective installation. The current version $40 of PadPuls M2V requires the use of the program MBCONF for configuration. The older DOS version PADCON may not be used anymore.

3.1 Installation

The software MBCONF for configuration of the pulse adaptor is a 32-bit application, which can be executed on IBM-PC compatible computers under the operating systems Windows 95 / 98 / NT 4.0. The desktop PC or laptop must have a free serial RS232C interface to connect the M-Bus level converter. The PadPuls M2 to be parameterized must be connected directly (i.e. as only M-Bus device) to the M-Bus output of the level converter.

Please start the file “MBCONF_SETUP.EXE” from Windows Explorer or via “Start Execute” to install the software from version 1.40 up. Subsequently you select the language of the installation procedure. The setup software can create a program group and a link on the desktop on demand. You can then execute both versions for German and English language either from start menu or desktop.

3.2 Operation

After program start the user operates the software according to the Windows conventions with the mouse or the keyboard. If you stay with the mouse on a button or an input field, then a hint to its function appears. Light-grey fields and boxes are not capable for editing. All input fields and buttons have an underlined letter. The function can be activated by simultaneous pressing of the keys [ALT] and the respective letter. Within dialogs the cursor can be moved with the keys [TAB] or [SHIFT][TAB] forwards and back. [SPACE] activates or deactivates selection boxes. Multiple selection boxes (arrow at the right edge) can be activated with [⇓]. The user then selects an entry with [⇓] and [⇑]. By pressing [RETURN] the selected entry is taken over. With [ESC] the selection box is left without transfer.

The program is arranged as a sheet system. The sheet “Info” contains general options of the communication with the M-Bus device to be configured. In this sheet the user can select the serial port of the PC, the baudrate of the PC, the baudrate of the M-Bus device and the M-Bus primary address which is used for communication. After a successful connection with the M-Bus device, further manufacturer information is shown in the sheet “Info” and additional device-specific sheets are displayed.
3.3 Sheet Info

This sheet shows some photos of supported M-Bus devices from the product range of the Relay GmbH, the PadMess GmbH and further manufacturer. Here are also links to the Internet page, from which the current version of the program can be downloaded, and to the email address for criticism and suggestions to the program.

The lower third of this card is likewise visible in every other card. Here the following input fields and buttons are always attainable:

COM-Port is the serial port of the PC to which the M-Bus level converter is connected. The selected port will be saved in an INI file and will be restored on startup. Therefore the COM-Port has to be configured only once.

Baudrate is the transmission speed of the serial port of the PC used for parameterization. Possible selections for this used M-Bus baudrate are 300, 2400 or 9600 baud. Attention: Baudrates of more than
New M-Bus Baudrate

M-Bus Address

Connect to meter

-Bus State” will then be refreshed. New sheets are generated depending on manufacturer and type of the M-Bus device. A single sheet for each channel appears in case of PadPuls M2. The sheets are labelled “M2 Port1” for the first and “M2 Port2” for the second channel.

Manufact. is an item that shows the 3-letter manufacturer code after successful reading (“Connect to meter”). The item is read only.

Generation shows the software revision of the firmware of the connected M-Bus device. The item is read only.

Type shows the type (here: PadPuls M2) of the connected device. This item is read only.

M-Bus State shows the M-Bus state of the connected device. This item is read only.

ZVEl optical mode If this option is activated, devices with an optical interface and protocol according to EN 1434-3 can be read and programmed using an optical reading head (e.g. PadPuls M4 / M4L).

Autom. readout The software always reads the data after writing, if this option is activated (useful for checking the correct programming).
Log-Window
The so-called log window is always visible. All M-Bus communication steps are logged in this window. Data is displayed in hexadecimal notation. It is possible to mark outputs in the log window and copy them with the keys "CTL-C" to the windows clipboard. Then the data can be easily imported to any text editor for documentation. As soon as the max. storage capacity of the window is achieved, no more data is logged. If you want to log further, you must delete the logged data.

The following buttons are also always visible:

Erase log clears all outputs inside the log window.

Exit terminates the program and stores the current setting of serial port (port no.) into the INI file.
3.4 Sheets M2 Port1 and M2 Port2

These sheet shows the current settings and values of the respectively pulse channel (port) of the PadPuls M2 (in this example: Port 1). The following input boxes and buttons are used to change the params of the pulse adapter:

Primary address is the M-Bus address of the selected port. Values between 1 and 250 can be entered in this field for new assignment of the address. After pressing the “Write” button the software programs this primary address and further variable settings on this sheet into the M-Bus device.

ID (sec. adr.) is the 8 digit M-Bus ID (identification no.), which is also used for secondary addressing of this port.

Medium describes the measured medium of the connected meter. Examples: Oil, Water, Heat, Electricity
Multiplicator

Unit

Counter

Current time

Due-date is the last due-date (date of the last storage of the due-date counter) in the format DD.MM.YY. This field is read only.

Due-date cnt. is the counter which was saved at the due-date. This field is read only.

Next Due-date is the next (future) due-date (date of the next storage of the counter) in the format DD.MM.YY. The counter will be saved at 00:00, e.g. with due-date 01.01 at change from 31th of December 23:59 to 1st of January 00:00. This field can be edited and programmed only, if the switch “Edit and change time” is marked. The due-date always applies to all ports of PadPuls M2.

State of ports shows the current input state of all ports (a closed contact is marked). This item is read only.

Write protection is marked, if the device is protected against programming. Then you cannot configure the adapter. The protection can be removed after opening the sealable housing and pressing the “Unprotect” pushbutton for a minimum of 4 seconds.

EEPROM error is marked, if there was an error while reading the non-volatile memory. In this case you must reconfigure the device.
Tariff A (P1/2) is used for activation tariff mode on port 1 and 2. The tariff mode will be selected after pressing the “Write” button, if the check box is marked. Port 1 is then used as pulse input and port 2 is the tariff switch. With an open tariff switch the pulses are accumulated to the counter for port 1 (main tariff). With a closed tariff contact the pulses increment the counter for port 2 (special tariff).

Long pulse sampling activates a longer charging of the contacts before sampling the inputs. This allows higher capacitors and / or many pulse generators with So interface (photocoupler with capacitors) to be connected. On delivery the extended pulse sampling is activated. The lifetime of battery is increased for about 15% if this feature is not used.

Edit and change time activation of this check box allows editing and programming of the “Current time” and “Next due-date”. The checkbox is deactivated automatically after successful configuration with “Write”.

Freeze transmits a command to the PadPuls M2 telling it to freeze the counters. The PadPuls M2 then copies the current counter to the “Due-date counter” and the current date to the (last) “Due-date”. The storage is done for all ports simultaneously. This the same behaviour as at due-date. The freeze command can be used with the broadcast address 255 to order all PadPuls to save the current counters. Then the M-Bus master has enough time to read all meters and get values of the same time (reading profiles).

Read clock of PC once gets the current date and time from the clock of the PC and transfers it into the item “Current time”.

Write protect Transmits a command to the PadPuls M2 to activate write protect. The PadPuls M2 then allows no further configuration. It is protected against unnoticed manipulation.

Read reads the M-Bus device and refreshes the data on the selected sheet.

Write sends the current options to the pulse converter, which saves this data into the non-volatile memory. The PadPuls M2 changes the options only if the write protect is deactivated. It is recommended to read the data after writing and check it.
Notes:

1. The variables „Current time“, „Next due-date“, „Write protection“, „Long pulse sampling“ and the command „Freeze“ always apply to all ports. Therefore you need to edit these items only in one sheet. The write protect should be activated after successful configuration of all ports.

2. Please press first the button „Connect to meter“ after connecting a new M-Bus device. Afterwards all sheets are refreshed.

3. Examples for configuration of pulse increment and unit:
 - Water meter with counter = 45120 l and 1 Pulse = 10 l:
 Choice 1: Unit = 10 l, Multiplicator = 1 / 1, Counter = 4512 (x 10 l)
 Choice 2: Unit = 1 l, Multiplicator = 10 / 1, Counter = 45120 (x 1 l)
 - Electricity meter with counter = 78346 kWh and 64 pulses / kWh:
 Choice: Unit = 1kWh, Multiplicator = 1 / 64, Counter = 78346 (x 1kWh)
 - Electricity meter with counter = 112,345 kWh and 1000 pulses / kWh:
 Choice: Unit = 1Wh, Multiplicator = 1 / 1, Counter = 1123454 (x 0,001Wh)

4. With activated tariff option the pulses are evaluated with the adjustments of the respective port. Therefore you should take care that both ports have the same pulse increment and unit.
4 Notes on malfunctionings

<table>
<thead>
<tr>
<th>Error</th>
<th>Possible source of error</th>
</tr>
</thead>
<tbody>
<tr>
<td>No function in battery mode</td>
<td>- Battery jumper is not placed</td>
</tr>
<tr>
<td></td>
<td>- Battery is empty (voltage min. 2.9V)</td>
</tr>
<tr>
<td>No function after installation, although the battery jumper is placed and the M-Bus is connected</td>
<td>- After placing the jumper a reset is generated using an R/C combination. It is possible that the reset was not correct. Please lift the jumper, wait about 10 seconds and place it again.</td>
</tr>
<tr>
<td>Pulses are not counted or wrong</td>
<td>- Check connection of the pulse meter</td>
</tr>
<tr>
<td></td>
<td>- Activate the „extended pulse sampling” if your system has:</td>
</tr>
<tr>
<td></td>
<td>a) long cables (> 10m)</td>
</tr>
<tr>
<td></td>
<td>b) high capacitors</td>
</tr>
<tr>
<td></td>
<td>c) electronic S₀ interface</td>
</tr>
<tr>
<td></td>
<td>- Check configuration (especially pulse increment and tariff mode)</td>
</tr>
</tbody>
</table>

5 Exchange of battery

The battery of the PadPuls M2 (IM003G with coin-type) can be exchanged by the user. The empty battery must be removed from the battery clip and a new lithium coin-type cell CR2032 is to be inserted. You can acquire these batteries in the trade or directly from us.

The M-Bus voltage should be connected to the PadPuls M2 to ensure that the device is counting on while battery exchange. If the device is not attached to the M-Bus, you can supply it alternatively with a DC voltage within the range of 12 to 45 VDC on the M-Bus terminals.
6 M-Bus Telegrams

<table>
<thead>
<tr>
<th>Position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>Start Length Length Start C A CI ID0 ID1 ID2 ID3 Man0</td>
<td></td>
</tr>
<tr>
<td>Value (hex):</td>
<td>68 2F 2F 68 08 72 AC</td>
<td></td>
</tr>
</tbody>
</table>

| 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|-------------------------------|------------|
| Man0 | Gen | Med | TC | State | Sig0 | Sig1 | DIF1 | VIF1 | Stand1 | Stand2 | Stand3 | Stand4 | DIF2 |
| 48 | | | | | | | | | | | | | |

| 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|------------------------------|--------------------|
| VIF2 | Date0 | Date1 | Date2 | Date3 | DIF3 | VIF3 | LeStd0 | LeStd1 | DIF4 | VIF4 | StStrn0 | StStrn1 | StStrn2 |
| 6D | | | | | 42 | 6C | | | 4C | | | | |

| 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|----------------|----------------|
| StStrn3 | DIF5 | VIF5 | VIFE5 | StDat0 | StDat1 | DIF6 | Info | Numerator | Denominator | PStat | CS | Stop |
| 42 | | | | 42 | | | 0F | | | | | 16 |

RSP_UD telegram

A: primary address
ID0-3: identification no. for secondary addressing
Man0-1: manufacturer code
Gen: revision of firmware (at this time 40, reserved range 40 to $4F$)
Med: medium
TC: transmission counter (number of transmitted RSP_UD)
State: most significant bit set (bit 7) -> write protected
VIF1=VIF4: selected VIF (value information field -> physical unit)
Stand: current counter
Date: current date (IEC870-5-4: data type F)
LeStd: last due-date, date of the due-date counter (IEC870-5-4: data type G)
StStrn: due-date counter
StDat: next (future) due-date
Info: 1 byte with information about tariff and sampling method
Numerator: numerator of pulse increment ($1..99$)
Denominator: denominator of pulse increment ($1..255$, $0 -> 256$)

\[
Pulse = \frac{\text{Numerator}}{\text{Denominator}} \times \text{VIF}
\]

PStat: state of inputs (current input state of the ports)
Byte 48 (Info)

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (bin)</td>
<td>x</td>
<td>Sampling</td>
<td>x</td>
<td>Tariff A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Select</td>
</tr>
</tbody>
</table>

Select: number of the port, for which the data is valid
0: Port1, 1: Port2

Tariff A: tariff A (Port 1 = count input, Port2 = counter / tariff signal)
0: tariff off (Port2=count input), 1: tariff on (Port2=tariff signal)

Sampling: duration of a sampling
0: short (0.5ms), 1: long (1.5ms)

<table>
<thead>
<tr>
<th>Position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>Start</td>
<td>Length</td>
<td>Length</td>
<td>Start</td>
<td>C</td>
<td>A</td>
<td>Cl</td>
<td>DIF1</td>
<td>VIF1</td>
<td>Anw</td>
<td>DIF2</td>
<td>VIF2</td>
</tr>
<tr>
<td>Value (hex):</td>
<td>68</td>
<td>68</td>
<td>53</td>
<td>51</td>
<td>01</td>
<td>7F</td>
<td>01</td>
<td>7A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAdr</td>
<td>DIF3</td>
<td>VIF3</td>
<td>ID₀</td>
<td>ID₁</td>
<td>ID₂</td>
<td>ID₃</td>
<td>Man₀</td>
<td>Man₁</td>
<td>Gen</td>
<td>Med</td>
<td>DIF4</td>
<td>VIF4</td>
<td>Stand₀</td>
</tr>
<tr>
<td>07</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC</td>
<td>48</td>
<td></td>
<td></td>
<td>0C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand₁</td>
<td>Stand₂</td>
<td>Stand₂</td>
<td>DIF5</td>
<td>VIF5</td>
<td>Date₀</td>
<td>Date₁</td>
<td>Date₂</td>
<td>Date₃</td>
<td>DIF6</td>
<td>VIF6</td>
<td>StDat₀</td>
<td>StDat₁</td>
<td>DIF7</td>
</tr>
<tr>
<td>04</td>
<td>6D</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt.</td>
<td>Numerator</td>
<td>Denominator</td>
<td>CS</td>
<td>Stop</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

SND_UD telegram (Abbreviations see RSP_UD)

Port: selected port (used with address 254)
0=Port1, 1=Port2

PAdr: new primary address of the port

Numerator: Numerator of pulse increment (1..99, BCD format)

Denominator: Denominator of pulse increment (1..255, 0 -> 256, binary format)

Option: Options (tariff, sampling). Coding like Info (Byte 48 RSP_UD).

The PadPuls M2 analyzes the individual data records on the basis of the DIF. Therefore the order of the records is allowed to vary. It is also possible to transmit only parts of the SND_UD specified above. The manufacturer-specific appendix of the telegram is always first analysed and must be included therefore in any case. The optional record „DIF1 VIF1 Anw“ selects a port to be addressed with global address 254. This must be always the first record in the telegram.
Protection-Telegram

This telegram activates the write protection.

Select telegram (old method)

Anw. specifies the Port of the PadPuls M2, which answers to a REQ_UD2 at address 254:
Port1: Anw=00
Port2: Anw=01

Select telegram (new method)

Anw. specifies the Port of the PadPuls M2, which answers to a REQ_UD2 at address 254:
Port1: Anw=00
Port2: Anw=01

Freeze telegram

On reception of this telegram the pulse adapter saves the current counters of all ports into the due-date counters and the current date into the due-date.
7 Technical Data

Case
Mounting on wall
Material polystyrol
Colour light-grey
W x H x D (80 x 80 x 52) mm
Protection type IP54, up to IP65 is possible

Environment
Operating temperature 0 to 55 °C
Storage temperature -20 to 70 °C
Humidity (non condensing) 10% to 70%

Terminals
Diameter of solid wires 0,14 to 1,5 mm²
Diameter of flexible wires 0,14 to 1,0 mm²

Specifications to contacts of pulse generators
Potential floating, insulation to earth > 1MΩ
Resistance open > 1MΩ, closed < 2kΩ
Maximum capacity (incl. cable) 2nF (short sampling), 12nF (long sampling)
Minimum contact duration 30 ms
Minimum pause between contacts 30 ms
Maximum pulse frequenz 14 Hz

Specifications to contact of tariff generator
Potential floating, insulation to earth > 1MΩ
Resistance open > 1MΩ, closed < 2kΩ
Maximum capacity (incl. cable) 2nF (short sampling), 12nF (long sampling)
Possible signal wave forms 50 / 60 Hz or static signals

PadPuls contact input:
Contact voltage 2.5V to 3.6V
Contact current 30 µA
Guaranteed debounce time 5.0 ms
Connection cable maximum 10 m (Twisted Pair recommended)
Current consumption

Principle
remote power supply from M-Bus with automatic changeover to battery on bus failure

Bus operation
max. 1.5 mA (unit load), no battery loading

Battery
- **standard**
 - Lithium 3V, coin-type, 230mAh, exchangable
- **optional**
 - Lithium 3V, type 2/3AA, 1350mAh

Battery operation
- at 25°C ca. 50µA (long sampling)

Battery lifetime
- **in standard battery**: at 25°C ca. 1/2 year
- **optional battery**: at 25°C ca. 3 years

Max. no. of days with M-Bus fail
- **per year for 10 years operation**
 - **standard battery**: at 25°C ca. 18 days p.a.
 - **optional battery**: at 25°C ca. 110 days p.a.

Short sampling
Battery lifetime is lengthened by ca.15% if short sampling is activated.

M-Bus: physical characteristics

- **M-Bus quiescent current** typ. 1.4 mA, max. 1.5 mA (1 unit load)
- **Space(0-Bit) current** quiescent current (1.4 mA) + typ. 13 mA
- **M-Bus Interface** TI TSS721 with 2 x 215Ω protection resistors

M-Bus Protocol

- **Standard** EN1434-3
- **Transmission speed** 300, 2400 baud with automatic detection
- **Addressing** Primary- and secondary addressing with wildcards, per input port: 1 primary and 1 secondary address
- **Supported functions** SND_NKE, REQ_UD2, SND_UD, ignores FCB-Bit (according to EN1434-3)
- **Data structure** variable structure, Low-Byte-First (CI: 72h)
 - length = 53 Bytes
 - 1. data record: counter
 - 2. data record: date and time
 - 3. data record: last due-date
 - 4. data record: last due-date counter
 - 5. data record: next due-date
 - 6. data record: manufacturer specific data
- **Configuration telegram** Identification no., medium, primary address, pulse increment, pulse unit, initial counter, tariff mode, date / time and next due-date: can be parameterized via SND_UD through M-Bus or optical interface